Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo.

نویسندگان

  • B Pulendran
  • P Kumar
  • C W Cutler
  • M Mohamadzadeh
  • T Van Dyke
  • J Banchereau
چکیده

The adaptive immune system has evolved distinct responses against different pathogens, but the mechanism(s) by which a particular response is initiated is poorly understood. In this study, we investigated the type of Ag-specific CD4(+) Th and CD8(+) T cell responses elicited in vivo, in response to soluble OVA, coinjected with LPS from two different pathogens. We used Escherichia coli LPS, which signals through Toll-like receptor 4 (TLR4) and LPS from the oral pathogen Porphyromonas gingivalis, which does not appear to require TLR4 for signaling. Coinjections of E. coli LPS + OVA or P. gingivalis LPS + OVA induced similar clonal expansions of OVA-specific CD4(+) and CD8(+) T cells, but strikingly different cytokine profiles. E. coli LPS induced a Th1-like response with abundant IFN-gamma, but little or no IL-4, IL-13, and IL-5. In contrast, P. gingivalis LPS induced Th and T cell responses characterized by significant levels of IL-13, IL-5, and IL-10, but lower levels of IFN-gamma. Consistent with these results, E. coli LPS induced IL-12(p70) in the CD8alpha(+) dendritic cell (DC) subset, while P. gingivalis LPS did not. Both LPS, however, activated the two DC subsets to up-regulate costimulatory molecules and produce IL-6 and TNF-alpha. Interestingly, these LPS appeared to have differences in their ability to signal through TLR4; proliferation of splenocytes and cytokine secretion by splenocytes or DCs from TLR4-deficient C3H/HeJ mice were greatly impaired in response to E. coli LPS, but not P. gingivalis LPS. Therefore, LPS from different bacteria activate DC subsets to produce different cytokines, and induce distinct types of adaptive immunity in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells.

The adaptive immune system can generate distinct classes of responses, but the mechanisms that determine this are poorly understood. In this study, we demonstrate that different Toll-like receptor (TLR) ligands induce distinct dendritic cell (DC) activation and immune responses in vivo. Thus, Escherichia coli LPS (TLR-4 stimulus), activates DCs to produce abundant IL-12(p70), but little IL-10, ...

متن کامل

بررسی نقش سلو لهای دندریتیک کبد و طحال در القای پاس خهای سلولی 1 TH و 2 TH

    Background & Objective: Dendritic cells(DCs) play an important role in directing immune response toward TH1(T-Helper 1) or TH2(T-Helper 2). These cells may induce distinct cytokine patterns in different tissues. So the pattern of cytokine induction by liver and spleen DCs may differ from each other. To investigate the difference between immune responses in the liver(as a non-lymphoid organ ...

متن کامل

Dendritic Cells and Their Role in Cancer Immunotherapy

Dendritic cells (DCs) are antigen presenting cells with unique capability to take up and process antigens in the peripheral blood and tissues. They subsequently migrate to draining lymph nodes where they present these antigens and stimulate naive T lympho-cytes. During their life cycle, DCs go through two maturation stages and are referred to as immature and mature cells, respectively. While im...

متن کامل

External human exposure and management immune system in pathogenesis of irritable bowel syndrome

External exposed radiation may play an important role in pathogens of irritable bowel syndrome (IBS), although is thought to arise due to a combination of genetic and environmental factors. The result is dysregulated immune responses due to alteration in the gut microbiota population and the subsequent development of gut inflammation. It has recently been shown that the effect of ioni...

متن کامل

Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells.

PAMP (pathogen-associated molecular pattern) recognition plays an important role during the innate immune response in both plants and animals. Lipopolysaccharides (LPS) derived from Gram-negative bacteria are representative of typical PAMP molecules and have been reported to induce defense-related responses, including the suppression of the hypersensitive response, the expression of defense gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 167 9  شماره 

صفحات  -

تاریخ انتشار 2001